Menus Subscribe Search
bright-brain

(PHOTO: AGSANDREW/SHUTTERSTOCK)

How Did Our Brains Get So Brilliant?

• September 10, 2013 • 10:00 AM

(PHOTO: AGSANDREW/SHUTTERSTOCK)

Two words: open architecture.

Modern human brains evolved over the last two million years while confronting the survival challenges of African grasslands. So how do our savannah-derived brains perform high-flying cognitive feats—like reading, learning chess, and doing theoretical physics—that seem totally unrelated to our ancestral environment?

Our brains are remarkably general problem solvers. Human children quickly learn and execute new cognitive tasks that the world’s smartest chimpanzee could never learn, even after years of training. Some of our cognitive skills are consequences of our unique ability to use language, but language is only part of the answer. The real secret to our brain’s success is what engineers call open architecture, or, as Tufts University neuroscientist Maryanne Wolf has put it, a “protean capacity to make new connections among structures and circuits originally devoted to other more basic brain processes.” The open architecture of the human brain is why humans from all cultures can learn to read, write, and do math.

These brain modules are found in animals ranging from fish to rats, and taken together, they encode important abstract concepts of Euclidean geometry.

For example, when we learn to read, our brain creates new connections between specialized neural modules for vision, hearing, and language. These specialized modules evolved long before the availability of reading material, but our flexible brains rig up connections between them to build a new and cognitively sophisticated function.

Another cognitively challenging skill is geometrical reasoning, which involves mentally manipulating features of shapes and lines, and transposing those mental transformations onto our surroundings. Recent work by Harvard psychologist Elizabeth Spelke and her colleagues shows that, like reading, our geometrical intuitions are also a result of the brain’s open architecture. We have uniquely human geometrical skills that are cobbled together from two evolutionarily ancient brain modules shared with nearly all other vertebrates.

These two core brain modules are a navigation module and a shape recognition module. The navigation module enables us to orient ourselves spatially by registering the orientation and relative distances of walls and other features of our surrounding area. With the shape-recognition module, our brain intuitively uses angles and lengths to register the shapes of small 2-D and 3-D objects. Both of these brain modules are found in animals ranging from fish to rats, and taken together, they encode important abstract concepts of Euclidean geometry: orientation, distance, length, and angle. But individually, each module uses only a limited set of geometrical features, and non-human animals show a limited ability to integrate these modules.

A simple example: If someone handed you a map of a triangular room and pointed out a position on that map, you’d have no trouble navigating to that spot. This task of transposing the triangle from the map onto the real space around you feels deceptively simple, but under the hood, you draw on both your navigation and your shape-recognition modules as you mentally manipulate the sides, angles, and orientation of the triangle on the map to guide yourself through the triangular room.

Young children have functioning navigation and shape-recognition modules, but, as Spelke and her colleagues found, those modules don’t talk to each other yet. To show this, the researchers had four-year-old children use a map to find a particular spot in two different triangular “rooms” (made with movable partitions): one in which the walls were not touching, so there were no corners (and hence no visible angles), and one with just corners, but no main walls (and hence no walls for judging relative distances).

In most cases, the children could navigate the room with no corners, but they had more trouble in the room that had only corners. In other words, the children did well when they could use their navigational module to gauge the distances between walls, but they were less skilled at using the angles of the corners-only room to fill in the missing sides of the room’s shape. Spelke and her colleagues concluded that “tests of map understanding show no evidence of integrated representations of distance and angle.” These children’s brains could process distances to navigate their surroundings, and they could process angles when presented with pictures of shapes, but they couldn’t put the two modules together.

The open architecture of our African savannah brains is the secret behind many of our uniquely human cognitive feats. The cost is the long years of childhood, during which we wire together specialized brain modules as we learn to speak, read, write, draw shapes, and generally do what adults manage without effort. Scientists are discovering their complex neural underpinnings of these tasks, discoveries that show us how children learn skills such as reading and geometrical reasoning and, ultimately, how we can help children who struggle to learn better.

Michael White
Michael White is a systems biologist at the Department of Genetics and the Center for Genome Sciences and Systems Biology at the Washington University School of Medicine in St. Louis, where he studies how DNA encodes information for gene regulation. He co-founded the online science pub The Finch and Pea. Follow him on Twitter @genologos.

More From Michael White

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

September 19 • 4:00 PM

In Your Own Words: What It’s Like to Get Sued Over Past Debts

Some describe their surprise when they were sued after falling behind on medical and credit card bills.



September 19 • 1:26 PM

For Charitable Products, Sex Doesn’t Sell

Sexy women may turn heads, but for pro-social and charitable products, they won’t change minds.


September 19 • 12:00 PM

Carbon Taxes Really Do Work

A new study shows that taxing carbon dioxide emissions could actually work to reduce greenhouse gases without any negative effects on employment and revenues.


September 19 • 10:00 AM

Why the Poor Remain Poor

A follow-up to “How Being Poor Makes You Poor.”


September 19 • 9:03 AM

Why Science Won’t Defeat Ebola

While science will certainly help, winning the battle against Ebola is a social challenge.


September 19 • 8:00 AM

Burrito Treason in the Lone Star State

Did Meatless Mondays bring down Texas Agriculture Commissioner Todd Staples?


September 19 • 7:31 AM

Savor Good Times, Get Through the Bad Ones—With Categories

Ticking off a category of things to do can feel like progress or a fun time coming to an end.


September 19 • 6:00 AM

The Most Untouchable Man in Sports

How the head of the governing body for the world’s most popular sport freely wields his wildly incompetent power.


September 19 • 4:00 AM

The Danger of Dining With an Overweight Companion

There’s a good chance you’ll eat more unhealthy food.



September 18 • 4:00 PM

Racial Disparity in Imprisonment Inspires White People to Be Even More Tough on Crime

White Americans are more comfortable with punitive and harsh policing and sentencing when they imagine that the people being policed and put in prison are black.



September 18 • 2:00 PM

The Wages of Millions Are Being Seized to Pay Past Debts

A new study provides the first-ever tally of how many employees lose up to a quarter of their paychecks over debts like unpaid credit card or medical bills and student loans.


September 18 • 12:00 PM

When Counterfeit and Contaminated Drugs Are Deadly

The cost and the crackdown, worldwide.


September 18 • 10:00 AM

How Do You Make a Living, Molly Crabapple?

Noah Davis talks to Molly Crapabble about Michelangelo, the Medicis, and the tension between making art and making money.


September 18 • 9:00 AM

Um, Why Are These Professors Creeping on My Facebook Page?

The ethics of student-teacher “intimacy”—on campus and on social media.


September 18 • 8:00 AM

Welcome to the Economy Economy

With the recent introduction of Apple Pay, the Silicon Valley giant is promising to remake how we interact with money. Could iCoin be next?



September 18 • 6:09 AM

How to Build a Better Election

Elimination-style voting is harder to fiddle with than majority rule.


September 18 • 6:00 AM

Homeless on Purpose

The latest entry in a series of interviews about subculture in America.


September 18 • 4:00 AM

Why Original Artworks Move Us More Than Reproductions

Researchers present evidence that hand-created artworks convey an almost magical sense of the artist’s essence.


September 17 • 4:00 PM

Why Gun Control Groups Have Moved Away From an Assault Weapons Ban

A decade after the ban expired, gun control groups say that focusing on other policies will save more American lives.


September 17 • 2:00 PM

Can You Make Two People Like Each Other Just By Telling Them That They Should?

OKCupid manipulates user data in an attempt to find out.


September 17 • 12:00 PM

Understanding ISIL Messaging Through Behavioral Science

By generating propaganda that taps into individuals’ emotional and cognitive states, ISIL is better able motivate people to join their jihad.


Follow us


For Charitable Products, Sex Doesn’t Sell

Sexy women may turn heads, but for pro-social and charitable products, they won't change minds.

Carbon Taxes Really Do Work

A new study shows that taxing carbon dioxide emissions could actually work to reduce greenhouse gases without any negative effects on employment and revenues.

Savor Good Times, Get Through the Bad Ones—With Categories

Ticking off a category of things to do can feel like progress or a fun time coming to an end.

How to Build a Better Election

Elimination-style voting is harder to fiddle with than majority rule.

Do Conspiracy Theorists Feed on Unsuspecting Internet Trolls?

Not literally, but debunkers and satirists do fuel conspiracy theorists' appetites.

The Big One

One in three drivers in Brooklyn's Park Slope—at certain times of day—is just looking for parking. The same goes for drivers in Manhattan's SoHo. September/October 2014 new-big-one-3

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.