Menus Subscribe Search

Climate Models Get Biological Makeover

• July 07, 2009 • 9:25 PM

While the ultimate concern over climate change centers on how it affects living things, in the past, modelers have focused on the physics and chemistry of climate change. Now they are including biology.

It’s springtime in Silicon Valley and a timeless tale is being retold. Kevin Arrigo, an oceanography professor at Stanford University, stands in the front of a classroom of students explaining how life works. He’s not talking about any old life though, but life in the ocean — where life began. And it’s not the fishes and the whales, either; as Arrigo puts it, “If it’s big enough to see, it’s probably not important.”

Arrigo is talking about the tiny plants that make up the base of the oceanic food pyramid — the phytoplankton. Like all plants, microscopic phytoplankton take light from the sun and carbon dioxide from the atmosphere to make food and oxygen in the process known as photosynthesis. But in much the same way that Arrigo dismisses the ecological primacy of the oceans’ larger denizens, climate scientists have for the most part dismissed the role of marine life in their climate models.

No longer.

For the first time, researchers at the premier climate-modeling institute in the United States are explicitly incorporating the complexities of marine life into their computer simulations. The first of these next-generation models was initiated last month, and while final data won’t be available until next year, their approach is already promising the most accurate climate simulations ever. More accurate climate models will help to inform and guide world leaders, policy makers and everyday people who seek to avoid potentially irreversible harm to the planet due to climate change caused by mankind. Understanding why — and why it took so long — to incorporate biology into climate models means taking a closer look not just at the computers but at the microscopic life of the oceans.

Phytoplankton grow quickly as long as they get sunlight from above and nutrient-rich water upwelling from the depths. The tiny plants are in turn eaten by zooplankton such as krill and copepods, which in turn are eaten by fish, which are eaten by bigger fish, and on upwards to seals and dolphins, and those other “unimportant” things we can see.

It was the evolution of these tiny plants in the ocean that allowed more complex organisms like humans to evolve. If man were around 3 billion years ago during the advent of the first phytoplankton, he would suffocate from lack of oxygen. By the process of photosynthesis, phytoplankton drastically changed the Earth’s atmosphere from having almost no oxygen to the 20 percent oxygen levels of today.

Changes are occurring in the atmosphere again, but not because of phytoplankton. This time humans are the cause. As scientists try to predict the changes man’s atmospheric tampering will have on the Earth, they are beginning to look to phytoplankton to see what role they might play in keeping Earth’s atmosphere in balance.

Last month, scientists working on the next Intergovernmental Panel on Climate Change report began experiments on the newest climate model, which, for the first time, includes phytoplankton.

According to IPCC, a scientific body charged with evaluating the risk of climate change associated with human activity, the Earth’s temperature could rise between 2.0 degrees Fahrenheit and 11.5 degrees during the 21st century. The main contributor to the warming is the increase of heat-trapping greenhouse gases in the atmosphere due to human activities such as deforestation and the burning of fossil fuel. One of the most significant greenhouse gases is carbon dioxide, a naturally occurring gas that is pumped out in unnatural quantities as a byproduct of burning those fossil fuels. Carbon dioxide levels in the atmosphere have increased 38 percent since the mid-1700s.

Every five to seven years since 1990, the IPCC has put out assessment reports that both summarize the scientific literature on climate change published since the last report and make projections. Key to making projections about the future climate are “global climate models,” or GCMs, which are computer codes used for simulating a dynamic Earth. The Fifth Assessment Report is due in 2014, and computer programmers and scientists are already hard at work on the next generation of GCMs.

According to Arrigo, biology — or to be specific, biogeochemistry, the chemical cycles caused by biology — was not thought to be important enough to include in GCMs until now. “There was no ocean biogeochemistry in the old IPCC models,” said Ron Stouffer, a meteorologist and climate modeler at Princeton University’s Geophysical Fluid Dynamics Laboratory, an arm of the National Oceanographic and Atmospheric Administration. “Now everyone is trying to include terrestrial and ocean biogeochemistry.”

Arrigo says biogeochemical processes were not modeled because scientists thought that the physical and chemical processes relating to increasing greenhouse gases, such as carbon dioxide trapping heat in the atmosphere, ocean circulation transporting heat poleward, clouds reflecting sunlight and sea-ice melting, were more important. Such processes might be more important, but nobody knows for sure because no one has extensively modeled biogeochemistry in GCMs before.

Another reason for not including biogeochemical cycles in GCMs is the extra layer of complexity they add “in a model you didn’t trust very much to begin with,” said professor Stephen Schneider, referring to the uncertainty inherent in modeling future climates. Schneider, a Stanford climatologist who has been involved with the IPCC since 1988, thinks the biggest thing holding back climate modeling is the lack of computer time.

According to Stouffer, it can take up to six months to run just one GCM experiment, and that’s on “one of the bigger (computers) on the planet,” he said. Stouffer noted that with biology in the models, run times could be twice as long — up to a year.

As computers become faster and more computing time is available, Schneider offered three strategies for modelers: Add more processes such as biogeochemistry, add more predictions of future greenhouse gas levels or increase the resolution of the model. Each option has its merits, and “none of it’s wrong,” he said. The decision likely will come down to scientists’ individual preferences.

Oceanographer Anand Gnanadesikan, also at the Geophysical Fluid Dynamics Laboratory, is one scientist who has decided to add biogeochemistry to the models. Gnanadesikan, who headed the ocean model development team for the IPCC’s Fourth Assessment Report, said, “I’m interested in how ocean circulation determines plant growth and how plant growth potentially influences ocean circulation.” The ocean model is coupled with an atmosphere model to make a global climate model.

Oceans are important for GCMs because water circulation is responsible for much of the heat distribution around the world, and the oceans remove carbon dioxide from the atmosphere. The “ocean is more important than the land” when it comes to the climate, Arrigo said — it’s four times more potent than the land at pulling carbon dioxide out of the atmosphere.

But as carbon dioxide in the atmosphere increases, it also increases in the oceans — with sometimes unexpected results. Carbon dioxide combines with seawater to make carbonic acid, which is acidifying the oceans and making it harder for marine organisms, including some phytoplankton, to make shells. The continued addition of carbon dioxide to the atmosphere and its subsequent absorption into the ocean threaten the future of these species.

Ocean biogeochemistry is nothing if not complex. It’s no wonder the first generations of climate models left it out. But following the details is potentially crucial for predicting climate changes. In the case of shelled animals in an acidified ocean, the chemical process that creates shells actually releases a molecule of carbon dioxide. So, decreasing the amount of shell means less carbon dioxide will be in the oceans — which means more carbon dioxide could leave the atmosphere and be absorbed into the water. This “negative feedback,” could decrease the amount of carbon dioxide in the atmosphere — cooling the climate — if it happens on a broad enough scale. The question is: Will it be strong enough to counteract global warming? Modeling may be the only way to find out.

According to Arrigo, most of the potential biogeochemical feedback loops caused by increasing carbon dioxide and global warming are negative feedbacks. Most physical feedbacks tend to be positive, for example, increasing temperatures will put more water vapor in the atmosphere via evaporation, further increasing the Earth’s temperature.

What’s unclear, Arrigo said, is whether first-order effects, like greenhouse warming, or feedback loops, like the demise of shells, are more important in climate modeling. Fortunately, we may know the answer to that question very soon. “We started running the model a couple days ago,” Stouffer said by phone last month, referring to the model he, Gnanadesikan, and about 80 other scientists at Geophysical Fluid Dynamics Laboratory have been working on for the past three years.

John Dunne, another climate modeler at Geophysical Fluid Dynamics Laboratory, says this latest model contains 30 biogeochemical variables used to model the impacts of biology on the climate, which he describes as “fairly sophisticated.” The model even contains three phytoplankton groups. This is light-years ahead of the biogeochemistry in the old IPCC models, in which the biology consisted of assuming the ocean to be “off-green everywhere” to account for phytoplankton absorption of light, says Gnanadesikan.

The GFDL climate modelers are taking their time to produce the best global climate model they can with the limited computational power and knowledge of oceanic biogechemical cycles available. The time has come for biology in the models, but it’ll take years to work out the kinks. The data from models they’re running now will be publicly available in a year and a quarter, said Stouffer. But he added, “There’s too much uncertainty, there’s not enough observation, and there’s not enough understanding.” The best we can hope for by the next IPCC report in 2014 “is to start to get a handle on the uncertainties.”

That means focusing, for the first time, on Arrigo’s favorite marine creatures, the phytoplankton. The needs of global climate science might mean that these tiniest of plants -and the people who study them — will finally get their turn in the big time.

Sign up for our free e-newsletter.

Are you on Facebook? Become our fan.

Follow us on Twitter.

Add our news to your site.

Nicholas Jachowski
Nicholas Jachowski is pursuing a master of science degree in earth systems at Stanford University.

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

September 1 • 1:00 PM

Television and Overeating: What We Watch Matters

New research finds fast-moving programming leads to mindless overeating.



September 1 • 6:00 AM

Why Someone Named Monty Iceman Sold Doogie Howser’s Estate

How unusual names, under certain circumstances, can lead to success.



August 29 • 4:00 PM

The Hidden Costs of Tobacco Debt

Even when taxpayers aren’t explicitly on the hook, tobacco bonds can cost states and local governments money. Here’s how.


August 29 • 2:00 PM

Why Don’t Men and Women Wear the Same Gender-Neutral Bathing Suits?

They used to in the 1920s.


August 29 • 11:48 AM

Your Brain Decides Whether to Trust Someone in Milliseconds

We can determine trustworthiness even when we’re only subliminally aware of the other person.


August 29 • 10:00 AM

True Darwinism Is All About Chance

Though the rich sometimes forget, Darwin knew that nature frequently rolls the dice.


August 29 • 8:00 AM

Why Our Molecular Make-Up Can’t Explain Who We Are

Our genes only tell a portion of the story.


August 29 • 6:00 AM

Strange Situations: Attachment Theory and Sexual Assault on College Campuses

When college women leave home, does attachment behavior make them more vulnerable to campus rape?


August 29 • 4:00 AM

Forgive Your Philandering Partner—and Pay the Price

New research finds people who forgive an unfaithful romantic partner are considered weaker and less competent than those who ended the relationship.


August 28 • 4:00 PM

Some Natural-Looking Zoo Exhibits May Be Even Worse Than the Old Concrete Ones

They’re often designed for you, the paying visitor, and not the animals who have to inhabit them.


August 28 • 2:00 PM

What I Learned From Debating Science With Trolls

“Don’t feed the trolls” is sound advice, but occasionally ignoring it can lead to rewards.


August 28 • 12:00 PM

The Ice Bucket Challenge’s Meme Money

The ALS Association has raised nearly $100 million over the past month, 50 times what it raised in the same period last year. How will that money be spent, and how can non-profit executives make a windfall last?


August 28 • 11:56 AM

Outlawing Water Conflict: California Legislators Confront Risky Groundwater Loophole

California, where ambitious agriculture sucks up 80 percent of the state’s developed water, is no stranger to water wrangles. Now one of the worst droughts in state history is pushing legislators to reckon with its unwieldy water laws, especially one major oversight: California has been the only Western state without groundwater regulation—but now that looks set to change.


August 28 • 11:38 AM

Young, Undocumented, and Invisible

While young migrant workers struggle under poor working conditions, U.S. policy has done little to help.


August 28 • 10:00 AM

The Five Words You Never Want to Hear From Your Doctor

“Sometimes people just get pains.”


August 28 • 8:00 AM

Why I’m Not Sharing My Coke

Andy Warhol, algorithms, and a bunch of popular names printed on soda cans.


August 28 • 6:00 AM

Can Outdoor Art Revitalize Outdoor Advertising?

That art you’ve been seeing at bus stations and billboards—it’s serving a purpose beyond just promoting local museums.


August 28 • 4:00 AM

Linguistic Analysis Reveals Research Fraud

An examination of papers by the discredited Diederik Stapel finds linguistic differences between his legitimate and fraudulent studies.


August 28 • 2:00 AM

Poverty and Geography: The Myth of Racial Segregation

Migration, regardless of race, ethnicity, gender, or sexuality (not to mention class), can be a poverty-buster.


August 27 • 4:00 PM

The ‘Non-Lethal’ Flash-Bang Grenades Used in Ferguson Can Actually Be Quite Lethal

A journalist says he was singed by a flash-bang fired by St. Louis County police trying to disperse a crowd, raising questions about how to use these military-style devices safely and appropriately.


August 27 • 2:00 PM

Do Better Looking People Have Better Personalities Too?

An experiment on users of the dating site OKCupid found that members judge both looks and personality by looks alone.


August 27 • 12:00 PM

Love Can Make You Stronger

A new study links oxytocin, the hormone most commonly associated with social bonding, and the one that your body produces during an orgasm, with muscle regeneration.


August 27 • 11:05 AM

Education, Interrupted

When it comes to educational access, young Syrian refugees are becoming a “lost generation.”


Follow us


Subscribe Now

Your Brain Decides Whether to Trust Someone in Milliseconds

We can determine trustworthiness even when we’re only subliminally aware of the other person.

Young, Undocumented, and Invisible

While young migrant workers struggle under poor working conditions, U.S. policy has done little to help.

Education, Interrupted

When it comes to educational access, young Syrian refugees are becoming a “lost generation.”

No, Smartphone-Loss Anxiety Disorder Isn’t Real

But people are anxious about losing their phones, even if they don’t do much to protect them.

Being a Couch Potato: Not So Bad After All?

For those who feel guilty about watching TV, a new study provides redemption.

The Big One

One in two full-time American fast-food workers' families are enrolled in public assistance programs, at a cost of $7 billion per year. July/August 2014 fast-food-big-one

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.