Menus Subscribe Search

Follow us


Genes Are Us

mouse

(Photo: schankz/Shutterstock)

Are Lab Mice of Men?

• April 18, 2014 • 12:00 PM

(Photo: schankz/Shutterstock)

There have always been limitations to experiments done on mice, but new technology, which allows scientists to replace mouse genes with human genes, could clear the way for new ground to be broken.

For a century, scientists have turned to mice in order to understand our biology—not just our common biology as mammals, but also our specifically human biology. Researchers have made major efforts to create lab mice that replicate some essential aspect of a human disease. Now a recent technological breakthrough makes it possible to “humanize” mice to an unprecedented degree, but it also raises the question: How many of our human traits can we build into a mouse?

Why do researchers use mice? There are the obvious reasons: they are small and easily kept; they breed quickly; and as mammals, they share much of our biology. While mice obviously aren’t tiny humans, for many purposes they are genetically close enough. The broad outlines of the mouse and human genomes are very similar, and nearly all of our roughly 21,000 genes have a murine counterpart. Because mice are so similar to us, researchers can often take a disease mutation discovered in humans and make the corresponding mutation in a mouse in order to learn something about the molecular underpinnings of the disease. There are now many mouse genetic “models” that exhibit key features of human diseases, including common diseases like heart disease, obesity, asthma, type I and type II diabetes; cancers, including Leukemia, pancreatic cancer, and melanoma; and neurological diseases such as autism, Huntington’s disease, Parkinson’s disease, and schizophrenia.

How many of our genes can function properly in a mouse? How many mouse genes can you simultaneously replace with human ones and still get a viable mouse? We have no idea.

These mouse models have proven tremendously useful in basic research, but new disease treatments that are developed in mouse studies have a shockingly high failure rate—80 percent—when they are tried in humans. A fair number of these failures happen because the mouse studies were poorly done, but often the problem is that the biology of these mice isn’t human enough. To overcome this issue, scientists attempt to “humanize” lab mice: Instead of simply mutating the mouse version of the gene being studied, researchers conduct a direct DNA transplant to completely replace the mouse gene with the human version. You might think that, like an attempt to run an Android app on an iPhone, humans genes wouldn’t work so well in the mouse operating system. But humanizing mice with DNA transplants works surprisingly well. Last week, three different teams of scientists reported the largest successful human-mouse DNA transplants to date.

The first research team, based at Yale University and University Hospital Zurich, set out to create a mouse that could properly transform human blood stem cells into fully functional immune cells, a process that is a critical part of a healthy immune response. To study this aspect of human immunity, scientists frequently inject human blood stem cells into mice and observe them as they develop into mature immune cells. Unfortunately, the mouse immune system components don’t always play nice with the human cells. By swapping four mouse genes with their human versions, the researchers created mice with humanized immune systems that properly mature human blood stem cells.

The other two research teams, one at U.K.’s Sanger Institute in the U.K. and the biotech company Kymab, and the other at Regeneron Pharmaceuticals in New York, swapped out a different set of immune system genes to create mice that make human antibodies. Both groups, using somewhat different technologies, substituted large human antibody genes for the mouse versions. The human genes appear to function just fine in the mice, which can now produce therapeutic antibodies suitable for treating human disease. More significant, though, are the technological implications: One of the teams replaced 0.002 percent of the mouse genome with human DNA. That may not sound like much, but it’s the largest replacement ever carried out in a mouse, and it’s a game-changer.

THE ABILITY TO MANIPULATE and transfer very short bits of DNA revolutionized molecular biology in the 1970s by removing the barriers to previously impossible experiments. The latest technologies are tearing down a new set of barriers. Earlier this month, a team of researchers reported the first complete synthesis of a “designer” chromosome. In this case it was a yeast chromosome, and thus small by human standards, but it was a thousand times larger than what researchers get from the current standard technology for DNA synthesis. It’s not cheap, but we now have the technology to replace each mouse gene with its human counterpart, and thereby ask previously impossible questions. How many of our genes can function properly in a mouse? How many mouse genes can you simultaneously replace with human ones and still get a viable mouse? We have no idea.

A way to rephrase these questions is this: How modular are human traits? What chunks of our biology can we isolate and transfer to mice, in order to better understand ourselves?

An example of the possibilities and limits of modularizing our biology is a 2009 study (PDF), where researchers at the Max Plank Institute in Leipzig humanized a mouse gene that plays an important role in an essential human trait: speech. Mutations in the gene FOX2P in humans result in severe impairments in the ability to speak and process grammar. Two small differences in FOXP2 distinguish the human version of this gene from that of other mammals, including chimps, our closest non-speaking relatives. It’s tempting to see these two small changes in a single gene as somehow central to one of our most human traits. The Leipzig researchers made those two changes to the mouse FOXP2, in the hope that the results would lead insight into the evolution of human speech.

But the results were more tantalizing than illuminating. The humanized FOXP2 mice showed distinct changes in the sounds they made and in the development of certain neurons. But it’s difficult to say much about the evolution of a complicated trait like language from the observation that “medium spiny neurons have increased dendrite lengths and increased synaptic plasticity” in humanized FOXP2 mice. Divorced from their native context, single human genes are unlikely to reproduce much of our biology in mice, although such experiments can generate important clues. But now we can swap in multiple human genes at once and recreate whole biological systems in mice. How human can we make lab mice? We don’t know what the limits are, but, given the new technology coming online, we haven’t reached them just yet.

Michael White
Michael White is a systems biologist at the Department of Genetics and the Center for Genome Sciences and Systems Biology at the Washington University School of Medicine in St. Louis, where he studies how DNA encodes information for gene regulation. He co-founded the online science pub The Finch and Pea. Follow him on Twitter @genologos.

More From Michael White

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

October 31 • 4:00 PM

Should the Victims of the War on Drugs Receive Reparations?

A drug war Truth and Reconciliation Commission along the lines of post-apartheid South Africa is a radical idea proposed by the Green Party. Substance.com asks their candidates for New York State’s gubernatorial election to tell us more.


October 31 • 2:00 PM

India’s Struggle to Get Reliable Power to Hundreds of Millions of People

India’s new Prime Minister Narendra Modi is known as a “big thinker” when it comes to energy. But in his country’s case, could thinking big be a huge mistake?


October 31 • 12:00 PM

In the Picture: SNAP Food Benefits, Birthday Cake, and Walmart

In every issue, we fix our gaze on an everyday photograph and chase down facts about details in the frame.


October 31 • 10:15 AM

Levels of Depression Could Be Evaluated Through Measurements of Acoustic Speech

Engineers find tell-tale signs in speech patterns of the depressed.


October 31 • 8:00 AM

Who Wants a Cute Congressman?

You probably do—even if you won’t admit it. In politics, looks aren’t everything, but they’re definitely something.


October 31 • 7:00 AM

Why Scientists Make Promises They Can’t Keep

A research proposal that is totally upfront about the uncertainty of the scientific process and its potential benefits might never pass governmental muster.


October 31 • 6:12 AM

The Psychology of a Horror Movie Fan

Scientists have tried to figure out the appeal of axe murderers and creepy dolls, but it mostly remains a spooky mystery.


October 31 • 4:00 AM

The Power of Third Person Plural on Support for Public Policies

Researchers find citizens react differently to policy proposals when they’re framed as impacting “people,” as opposed to “you.”


October 30 • 4:00 PM

I Should Have Told My High School Students About My Struggle With Drinking

As a teacher, my students confided in me about many harrowing aspects of their lives. I never crossed the line and shared my biggest problem with them—but now I wish I had.


October 30 • 2:00 PM

How Dark Money Got a Mining Company Everything It Wanted

An accidentally released court filing reveals how one company secretly gave money to a non-profit that helped get favorable mining legislation passed.


October 30 • 12:00 PM

The Halloween Industrial Complex

The scariest thing about Halloween might be just how seriously we take it. For this week’s holiday, Americans of all ages will spend more than $5 billion on disposable costumes and bite-size candy.


October 30 • 10:00 AM

Sky’s the Limit: The Case for Selling Air Rights

Lower taxes and debt, increased revenue for the city, and a much better use of space in already dense environments: Selling air rights and encouraging upward growth seem like no-brainers, but NIMBY resistance and philosophical barriers remain.


October 30 • 9:00 AM

Cycles of Fear and Bias in the Criminal Justice System

Exploring the psychological roots of racial disparity in U.S. prisons.


October 30 • 8:00 AM

How Do You Make a Living, Email Newsletter Writer?

Noah Davis talks to Wait But Why writer Tim Urban about the newsletter concept, the research process, and escaping “money-flushing toilet” status.



October 30 • 6:00 AM

Dreamers of the Carbon-Free Dream

Can California go full-renewable?


October 30 • 5:08 AM

We’re Not So Great at Rejecting Each Other

And it’s probably something we should work on.


October 30 • 4:00 AM

He’s Definitely a Liberal—Just Check Out His Brain Scan

New research finds political ideology can be easily determined by examining how one’s brain reacts to disgusting images.


October 29 • 4:00 PM

Should We Prosecute Climate Change Protesters Who Break the Law?

A conversation with Bristol County, Massachusetts, District Attorney Sam Sutter, who dropped steep charges against two climate change protesters.


October 29 • 2:23 PM

Innovation Geography: The Beginning of the End for Silicon Valley

Will a lack of affordable housing hinder the growth of creative start-ups?


October 29 • 2:00 PM

Trapped in the Tobacco Debt Trap

A refinance of Niagara County, New York’s tobacco bonds was good news—but for investors, not taxpayers.


October 29 • 12:00 PM

Purity and Self-Mutilation in Thailand

During the nine-day Phuket Vegetarian Festival, a group of chosen ones known as the mah song torture themselves in order to redirect bad luck and misfortune away from their communities and ensure a year of prosperity.


October 29 • 10:00 AM

Can Proposition 47 Solve California’s Problem With Mass Incarceration?

Reducing penalties for low-level felonies could be the next step in rolling back draconian sentencing laws and addressing the criminal justice system’s long legacy of racism.


October 29 • 9:00 AM

Chronic Fatigue Syndrome and the Brain

Neuroscientists find less—but potentially stronger—white matter in the brains of patients with CFS.


October 29 • 8:00 AM

America’s Bathrooms Are a Total Failure

No matter which American bathroom is crowned in this year’s America’s Best Restroom contest, it will still have a host of terrible flaws.


Follow us


Levels of Depression Could Be Evaluated Through Measurements of Acoustic Speech

Engineers find tell-tale signs in speech patterns of the depressed.

We’re Not So Great at Rejecting Each Other

And it's probably something we should work on.

Chronic Fatigue Syndrome and the Brain

Neuroscientists find less—but potentially stronger—white matter in the brains of patients with CFS.

Incumbents, Pray for Rain

Come next Tuesday, rain could push voters toward safer, more predictable candidates.

Could Economics Benefit From Computer Science Thinking?

Computational complexity could offer new insight into old ideas in biology and, yes, even the dismal science.

The Big One

One town, Champlain, New York, was the source of nearly half the scams targeting small businesses in the United States last year. November/December 2014

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.