Menus Subscribe Search

Follow us


Genes Are Us

cleopatra

Elizabeth Taylor in Cleopatra. (Photo: Wikimedia Commons)

Elizabeth Taylor, My Great-Grandpa, and the Future of Antibiotics

• June 27, 2014 • 4:00 AM

Elizabeth Taylor in Cleopatra. (Photo: Wikimedia Commons)

While it’s not clear whether or not they worked for the Cleopatra star over a half-century ago, phage treatments could help solve the growing problem of antibiotic resistance.

In March of 1961, Elizabeth Taylor was in London filming her next blockbuster, Cleopatra, when she fell ill with pneumonia. She underwent an emergency tracheotomy, and for days the press followed every development in her increasingly dire situation. On March 7, a Philadelphia-area newspaper reported that a local company, Delmont Laboratories, had put several doses of an unusual antibacterial treatment on the next jet to London at the request of Taylor’s doctors. With a touch of community pride, the paper reported that the treatment, “staphylococcus bacteriophage lysate,” was exclusively manufactured by Delmont Laboratories, and that “Christopher Roos, laboratory director and formerly senior bacteriologist for Sharpe and Dohme, played a major part in its development.”

It’s not clear what impact the treatment had on Elizabeth Taylor, but Christopher Roos, my great-grandfather, didn’t doubt its efficacy. My mother recalls that during her childhood visits to his house, he would treat her colds with a dose, administered as a nasal spray. Staphylococcus bacteriophage lysate is a form of antibacterial therapy based on phages, viruses that are the natural predators of bacteria. Discovered early in the 20th century, decades before modern antibiotics, phages have an obvious therapeutic potential that doctors and scientists were quick to explore. In the 1930s and ’40s, bacteriophage preparations were manufactured by major drug companies like Eli Lilly, and used to treat everything from cholera to wound infections.

Aside from the technological advances, there is now a major medical and economic reason to reconsider phages: the growing crisis of antibiotic resistance. The number of antibiotic-resistant bacterial infections is growing rapidly, while the drug pipeline of new antibiotics is drying up.

But the hype got a bit ahead of the science. The biology of these viruses was not well understood, and phage treatments were difficult to prepare consistently. The effectiveness of the treatments varied widely, and while there were some clinical studies of phage therapy, many weren’t particularly rigorous by rapidly modernizing, post-World War II standards. In the mid-1940s, penicillin, cheap and obviously effective, began to be mass-produced in the U.S. By the time that Liz Taylor’s doctors called my great-grandfather, phage therapy was on the wane. Knowing that, the story sounds like the familiar scenario of the celebrity doctor who peddles some unproven alternative treatment to his famous patient.

But that characterization isn’t accurate. Despite the lack of rigor in the early studies, there is a long record of substantial evidence showing that phage therapy holds genuine promise. After phage therapy was superseded by antibiotics in the West, researchers in the Soviet Union and Eastern Europe—where antibiotics weren’t as readily available—continued to work on phage therapy, with encouraging results. Some occasional studies continued in the U.S. and Western Europe as well. And now, phage therapy is in the limelight again, drawing the interest of researchers, governments, and biotech companies.

What changed? As my Washington University colleague Jeffrey Gordon and his co-workers wrote, we’re experiencing “the incipient rise of a phage biology renaissance,” thanks to modern DNA analysis technologies. Discovered before we knew that genes were made of DNA, we now know that phages are highly efficient gene-delivery machines. They inject their genomes into bacteria, hijack the bacterial machinery to make new DNA copies of themselves, and repackage those copies into protein capsules, bursting open the bacterial cell in the process. The capsules then diffuse away in search of new bacterial prey. By scouring oceans, soil, and our own bodies for phage DNA, researchers have discovered an enormous world of viruses with a tremendous bacterial-killing capability—according to one review, “phage predation destroys an estimated half of the world bacteria population every 48 hours.” The diversity of the world’s bacteriophages is an essentially inexhaustible source that we can trawl for potential anti-bacterial treatments, with the aid of today’s highly effective biotechnological tools. And researchers like Gordon and his lab members are exploring how phages operate in their natural habitats, such as the human gut.

Aside from the technological advances, there is now a major medical and economic reason to reconsider phages: the growing crisis of antibiotic resistance. As the Centers for Disease Control reported last year, the number of antibiotic-resistant bacterial infections is growing rapidly, while the drug pipeline of new antibiotics is drying up. Two million people acquire antibiotic-resistant infections each year in the U.S., leading to over $20 billion in health care costs. And antibiotics themselves pose a major burden, accounting for 20 percent of all emergency room visits for adverse drug events.

Phage therapy has the potential to avoid all of these problems. While bacteria can become resistant to any one strain of phage, there are many different phage strains out there that could be combined into an effective, multi-strain cocktail treatment. And unlike chemical antibiotics, phages have their own genomes that can evolve to circumvent the defenses of resistant bacteria. Phage therapy also would not destroy the important community of healthy bacteria in our guts. Antibiotics wipe out these healthy gut bacteria, leaving people vulnerable to opportunistic infections by Clostridium difficile, a bacteria that the CDC reports is responsible for 14,000 deaths each year in the U.S.

The need is there, but will phage therapy actually work in humans? The answer is a cautious yes. The biomedical research community is certainly ready to try, bringing new funding, technology, and rigor to this old-fashioned approach to infections. A clinical trial of phage therapy for infected burn wounds is underway in Europe. The FDA has already approved phages to kill contaminating bacteria in food, and phage treatments for infections are being tested for efficacy in some animal studies, as well as for safety in a few human studies (PDF). Phage therapy may or may not become the major solution to our crisis of antibiotic resistance, but it is very likely that we’ll soon see a variety of limited but successful applications of phage therapy in humans.

Delmont’s product was a federally-approved drug in the 1950s, but as the FDA revised its approach to regulation in later decades, the small company struggled (PDF), and, in the 1990s, it stopped selling its bacteriophage treatments for human use. The company continues to make a USDA-licensed phage therapy to treat recalcitrant skin infections in dogs. When my great-grandfather sent those doses of phage lysate express to Liz Taylor, the time wasn’t quite right for phage therapy, scientifically or economically. But times have changed, and this old-fashioned treatment may become cutting-edge.

Michael White
Michael White is a systems biologist at the Department of Genetics and the Center for Genome Sciences and Systems Biology at the Washington University School of Medicine in St. Louis, where he studies how DNA encodes information for gene regulation. He co-founded the online science pub The Finch and Pea. Follow him on Twitter @genologos.

More From Michael White

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

December 19 • 4:00 PM

How a Drug Policy Reform Organization Thinks of the Children

This valuable, newly updated resource for parents is based in the real world.


December 19 • 2:00 PM

Where Did the Ouija Board Come From?

It wasn’t just a toy.


December 19 • 12:00 PM

Social Scientists Can Do More to Eradicate Racial Oppression

Using our knowledge of social systems, all social scientists—black or white, race scholar or not—have an opportunity to challenge white privilege.


December 19 • 10:17 AM

How Scientists Contribute to Bad Science Reporting

By not taking university press officers and research press releases seriously, scientists are often complicit in the media falsehoods they so often deride.


December 19 • 10:00 AM

Pentecostalism in West Africa: A Boon or Barrier to Disease?

How has Ghana stayed Ebola-free despite being at high risk for infection? A look at their American-style Pentecostalism, a religion that threatens to do more harm than good.


December 19 • 8:00 AM

Don’t Text and Drive—Especially If You’re Old

A new study shows that texting while driving becomes even more dangerous with age.


December 19 • 6:12 AM

All That ‘Call of Duty’ With Your Friends Has Not Made You a More Violent Person

But all that solo Call of Duty has.


December 19 • 4:00 AM

Food for Thought: WIC Works

New research finds participation in the federal WIC program, which subsidizes healthy foods for young children, is linked with stronger cognitive development and higher test scores.


December 18 • 4:00 PM

How I Navigated Life as a Newly Sober Mom

Saying “no” to my kids was harder than saying “no” to alcohol. But for their sake and mine, I had to learn to put myself first sometimes.


December 18 • 2:00 PM

Women in Apocalyptic Fiction Shaving Their Armpits

Because our interest in realism apparently only goes so far.


December 18 • 12:00 PM

The Paradox of Choice, 10 Years Later

Paul Hiebert talks to psychologist Barry Schwartz about how modern trends—social media, FOMO, customer review sites—fit in with arguments he made a decade ago in his highly influential book, The Paradox of Choice: Why More Is Less.


December 18 • 10:00 AM

What It’s Like to Spend a Few Hours in the Church of Scientology

Wrestling with thetans, attempting to unlock a memory bank, and a personality test seemingly aimed at people with depression. This is Scientology’s “dissemination drill” for potential new members.


December 18 • 8:00 AM

Gendering #BlackLivesMatter: A Feminist Perspective

Black men are stereotyped as violent, while black women are rendered invisible. Here’s why the gendering of black lives matters.


December 18 • 7:06 AM

Apparently You Can Bring Your Religion to Work

New research says offices that encourage talk of religion actually make for happier workplaces.


December 18 • 6:00 AM

The Very Weak and Complicated Links Between Mental Illness and Gun Violence

Vanderbilt University’s Jonathan Metzl and Kenneth MacLeish address our anxieties and correct our assumptions.


December 18 • 4:00 AM

Should Movies Be Rated RD for Reckless Driving?

A new study finds a link between watching films featuring reckless driving and engaging in similar behavior years later.


December 17 • 4:00 PM

How to Run a Drug Dealing Network in Prison

People tend not to hear about the prison drug dealing operations that succeed. Substance.com asks a veteran of the game to explain his system.


December 17 • 2:00 PM

Gender Segregation of Toys Is on the Rise

Charting the use of “toys for boys” and “toys for girls” in American English.


December 17 • 12:41 PM

Why the College Football Playoff Is Terrible But Better Than Before

The sample size is still embarrassingly small, but at least there’s less room for the availability cascade.


December 17 • 11:06 AM

Canadian Kids Have a Serious Smoking Problem

Bootleg cigarette sales could be leading Canadian teens to more serious drugs, a recent study finds.


December 17 • 10:37 AM

A Public Lynching in Sproul Plaza

When photographs of lynching victims showed up on a hallowed site of democracy in action, a provocation was issued—but to whom, by whom, and why?


December 17 • 8:00 AM

What Was the Job?

This was the year the job broke, the year we accepted a re-interpretation of its fundamental bargain and bought in to the push to get us to all work for ourselves rather than each other.


December 17 • 6:00 AM

White Kids Will Be Kids

Even the “good” kids—bound for college, upwardly mobile—sometimes break the law. The difference? They don’t have much to fear. A professor of race and social movements reflects on her teenage years and faces some uncomfortable realities.



December 16 • 4:00 PM

How Fear of Occupy Wall Street Undermined the Red Cross’ Sandy Relief Effort

Red Cross responders say there was a ban on working with the widely praised Occupy Sandy relief group because it was seen as politically unpalatable.


Follow us


Don’t Text and Drive—Especially If You’re Old

A new study shows that texting while driving becomes even more dangerous with age.

Apparently You Can Bring Your Religion to Work

New research says offices that encourage talk of religion actually make for happier workplaces.

Canadian Kids Have a Serious Smoking Problem

Bootleg cigarette sales could be leading Canadian teens to more serious drugs, a recent study finds.

The Hidden Psychology of the Home Ref

That old myth of home field bias isn’t a myth at all; it’s a statistical fact.

The Big One

One in two United States senators and two in five House members who left office between 1998 and 2004 became lobbyists. November/December 2014

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.