Menus Subscribe Search

Follow us


Randomness Week

enigma-machine

An Enigma machine. (Photo: Wikimedia Commons)

Does Randomness Actually Exist?

• August 25, 2014 • 12:00 PM

An Enigma machine. (Photo: Wikimedia Commons)

Our human minds are incapable of truly answering that question.

All week long we’ll be posting stories about randomness and how poorly we tend to deal with it. Check back tomorrow for more.

Pick a number. Any number, one through 100. Got one? OK, so how did you pick it?

Humans are bad at creating and detecting randomness. Perceiving patterns has proven a great survival mechanism—the giant, spotted cats eat my children; this berry doesn’t make me sick—so we have evolved to be good at it. Perhaps too good. We misinterpret data all the time as a result of this desire for order. We believe that when a coin comes up heads five straight times, we are “due” for a tails, or we think that the stock market is predictable. It’s maybe unsurprising, then, that humans aren’t very good random number generators. And because of that, we’ve had to make some.

If you Google “Random Number Generators,” you’ll find several on the first page that are perfectly capable of mimicking a random process. After specifying a range, they will return a number. Do so 100 or 1,000 or 10,000 times, and you won’t find any discernible pattern to the results. Yet despite the name, the results are anything but random.

Once you learn about pseudo-randomness, it’s easy to see the world through Democritus’ eyes. Rolling dice isn’t random. Instead, the dice are governed by specific, mathematical laws, and, if we knew the exact contours of the desk and the force applied to the dice, we could calculate which sides would come to rest facing upward.

Computers are hyper-logical machines that can only follow specific commands. As explained by a BBC Radio broadcast from 2011, some of the random number generators you’ll find on Google follow something called the “Middle Squares” method: start with a seed number, which can be any number. Square that number. You’ll now have roughly twice as many digits. Take a few of the digits in the middle of that number and square that. Repeating this process is like shuffling a deck of cards. Still, if you know three basic pieces of information—the seed number, the number of digits taken from the middle of each square, and how many times the process will be repeated—you can calculate this supposedly “random” number every single time without fail.

Mathematicians have a word for this kind of randomness. They cleverly call it “pseudo-randomness”: the process passes statistical tests for randomness, yet the number itself is completely determined. On the BBC Radio broadcast, professor Colva Roney-Dougal of the University of St. Andrews says, “I can never prove that a sequence is random, I can only prove that it looks random and smells random.”

All of which brings us to this: Given the limits of human knowledge, how can we ever know if something is truly random?

A FEW ANCIENT THINKERS, known as Atomists, fathered a line of thought, which claims that, in fact, randomness doesn’t exist. The most deterministic among them, Democritus, believed the entire state of the universe could be explained through cause and effect. In other words, he was only interested in how the past dictated the present and future.

Once you learn about pseudo-randomness, it’s easy to see the world through Democritus’ eyes. Rolling dice isn’t random. Instead, the dice are governed by specific, mathematical laws, and if we knew the exact contours of the desk and the force applied to the dice, we could calculate which sides would come to rest facing upward. The same is true of shuffling cards. If we knew the exact height the cards were lifted, the exact force with which they were released, and the distance from each other, it’s completely feasible to calculate the order of the cards, time and time again. This is true for every game of chance, which are governed by Newtonian, or classical, physics. It all appears completely deterministic.

A lack of true randomness would be a huge problem, just like it was for the Germans during World War II with their revered but ultimately doomed Enigma enciphering machine. With its 150 quintillion different settings, many Allied cryptologists believed the code was unbreakable. Yet, because it was a mere matter of rotor settings and circuitry—or put simply, completely deterministic—the Allies were able to crack the code.

Since Newtonian physics has proven resistant to true randomness, cryptologists have since looked to quantum physics, or the rules that govern subatomic particles, which are completely different than Newtonian physics. Radioactive materials spontaneously throw off particles in a probabilistic manner, but the exact time when each particle will be discarded is inherently random. (We think.) So given a small window of time, the number of radioactive particles discarded can act as the seed for the random number generator.

Every time you buy something with a credit card, you’re relying on your information to be transmitted safely across a perfectly accessible network. This is where the difference between random and pseudo-random becomes vastly important. Pseudo-random patterns, like the ones created by the Enigma machine, are messages begging to be read. Random patterns are the cryptic ideal.

A company called PDH International is one of the patent-holders for Patent US6745217 B2, or “Random Number Generator Based on the Spontaneous Alpha-Decay,” the very process described above. PDH International, with an annual revenue of $10 to $25 million, specializes in the “fields of Privacy Protection, Authentication, Encryption and Electronic Document Protection.” PDH comes up with ways to safely encrypt data using true randomness from quantum physics.

BUT BACK TO THAT number you picked.

As with randomness, the more we learned about the precise nature of brain functions, we began to question whether free will was possible. If everything is the result of precise causal chains like the rolling of dice or shuffling of cards, some wondered how we can really be making genuine choices. However, as we’ve learned more about quantum physics, the possibility of genuine choice has been revitalized due to the break in the causal chain. In a way, quantum physics introduced a giant, unsolvable question mark, and question marks are good for free-will theorists. Ironically, quantum physics simultaneously undermines this line of thought, since randomness is bad for the idea that we are actually making rational choices.

So pick a number, any number. Maybe it is random after all.

Aaron Gordon
Aaron Gordon is a freelance writer living in Washington, D.C. He also contributes to Sports on Earth, The New Yorker, Deadspin, and Slate.

More From Aaron Gordon

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

October 20 • 12:00 PM

Love and Hate in Israel and Palestine

Psychologists find that parties to a conflict think they’re motivated by love while their enemies are motivated by hate.


October 20 • 11:00 AM

My Dog Comes First: The Importance of Pets to Homeless Youth

Dogs and cats have both advantages and disadvantages for street-involved youth.


October 20 • 10:00 AM

Homophobia Is Not a Thing of the Past

Despite growing support for LGBT rights and recent decisions from the Supreme Court regarding the legality of same-sex marriage, the battle for acceptance has not yet been decided.


October 20 • 8:00 AM

Big Boobs Matter Most

Medical mnemonics are often scandalous and sexist, but they help the student to both remember important facts and cope with challenging new experiences.


October 20 • 6:00 AM

When Disease Becomes Political: The Likely Electoral Fallout From Ebola

Will voters blame President Obama—and punish Democrats in the upcoming mid-term elections—for a climate of fear?


October 20 • 4:00 AM

Coming Soon: The Anatomy of Ignorance


October 17 • 4:00 PM

What All Military Families Need to Know About High-Cost Lenders

Lessons from over a year on the beat.


October 17 • 2:00 PM

The Majority of Languages Do Not Have Gendered Pronouns

A world without “he.” Or “she.”


October 17 • 11:01 AM

How to Water a Farm in Sandy Ground

Physicists investigate how to grow food more efficiently in fine-grained soil.


October 17 • 10:00 AM

Can Science Fiction Spur Science Innovation?

Without proper funding, the answer might not even matter.


October 17 • 8:00 AM

Seattle, the Incredible Shrinking City

Seattle is leading the way in the micro-housing movement as an affordable alternative to high-cost city living.


October 17 • 6:00 AM

‘Voodoo Death’ and How the Mind Harms the Body

Can an intense belief that you’re about to die actually kill you? Researchers are learning more about “voodoo death” and how it isn’t limited to superstitious, foreign cultures.


October 17 • 4:00 AM

That Arts Degree Is Paying Off

A survey of people who have earned degrees in the arts find they are doing relatively well, although their education didn’t provide much guidance on managing a career.


October 16 • 4:00 PM

How (Some) Economists Are Like Doomsday Cult Members

Cognitive dissonance and clinging to paradigms even in the face of accumulated anomalous facts.


October 16 • 2:00 PM

The Latest—and Most Mysterious—Player in the Nasty Battle Over Net Neutrality

As the FCC considers how to regulate Internet providers, the telecom industry’s stealth campaign for hearts and minds encompasses everything from art installations to LOLcats.


October 16 • 12:00 PM

How Many Ads Is Too Many Ads?

The conundrum of online video advertising.


October 16 • 11:00 AM

Unlocking Consciousness

A study of vegetative patients closes in on the nature of consciousness.


October 16 • 10:00 AM

The False Promises of Higher Education

Danielle Henderson spent six years and $60,000 on college and beyond. The effects of that education? Not as advertised.


October 16 • 8:00 AM

Faster Justice, Closer to Home: The Power of Community Courts

Community courts across the country are fighting judicial backlog and lowering re-arrest rates.


October 16 • 6:00 AM

Killing Your Husband to Save Yourself

Without proper legal instruments, women with abusive partners are often forced to make a difficult choice: kill or be killed.


October 16 • 4:00 AM

Personality Traits Linked to Specific Diseases

New research finds neurotic people are more likely to suffer a serious health problem.


October 16 • 2:00 AM

Comparing Apples to the Big Apple: Yes, Washington, D.C., Is More Expensive Than New York City

Why shouldn’t distant locales tied to jobs in the urban core count in a housing expenditure study?


October 15 • 4:00 PM

Why Asian American Parents Are the Least Likely to Spank Their Kids

Highly educated, middle-class parents are less likely to use corporal punishment to discipline their children than less-educated, working-class, and poor parents.


October 15 • 2:00 PM

The Federal Government’s New Doctor Payments Website Is Worthy of a Recall

Charles Ornstein takes a test drive using the federal government’s new website for drug and device payments and finds it virtually unusable.


October 15 • 12:00 PM

How Cosmetic Companies Get Away With Pseudoscience

Anti-aging creams make absurd claims that they repair DNA damage or use stem-cell treatments. When cosmetics companies and dermatologists partner to maximize profits, who is responsible for protecting the consumer?


Follow us


Love and Hate in Israel and Palestine

Psychologists find that parties to a conflict think they're motivated by love while their enemies are motivated by hate.

How to Water a Farm in Sandy Ground

Physicists investigate how to grow food more efficiently in fine-grained soil.

Unlocking Consciousness

A study of vegetative patients closes in on the nature of consciousness.

Advice for Emergency Alert Systems: Don’t Cry Wolf

A survey finds college students don't always take alerts seriously.

Brain’s Reward Center Does More Than Manage Rewards

Nucleus accumbens tracks many different connections in the world, a new rat study suggests.

The Big One

One company, Amazon, controls 67 percent of the e-book market in the United States—down from 90 percent five years ago. September/October 2014 new-big-one-5

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.