Menus Subscribe Search

Follow us


E-LEARNING

(PHOTO: SHEVCHUK BORIS/SHUTTERSTOCK)

Why MOOCs Are Bad for Science Education

• June 07, 2013 • 6:00 AM

(PHOTO: SHEVCHUK BORIS/SHUTTERSTOCK)

Instead of overturning traditional education models, when it comes to science, MOOCs just reinforce them.

A college education today is ridiculously expensive, and tomorrow it will be even more so. Can the Internet change that? Some people are hoping it will. They argue that online courses, or more specifically, massively open online courses (MOOCs) will make “the best courses, from the best professors, and the best schools” available to the masses at a fraction of the cost of a brick-and-mortar education. MOOCs would solve the problem of a hefty college price tag while improving everyone’s educational experience to boot. But far from overturning the staid and overpriced traditional lecture model of education, MOOCs reinforce that model and conflict with recent research on how to teach technical subjects like science.

The traditional classroom lecture has been a primary component of a college education for about as long as colleges have existed, but this approach to teaching makes some bad assumptions about the purpose of education, particularly education in science. As Nobelist and physicist Carl Wieman has argued, classroom lectures wrongly assume that the role of the instructor is simply to transfer knowledge, “as if it were bits of information, to the receptive students, much like pouring water from a large jug into a set of small receptive cups.”

Far from overturning the staid and overpriced traditional lecture model of education, MOOCs reinforce that model and conflict with recent research on how to teach technical subjects like science.

If education were primarily about transferring knowledge, then naturally you would want the most knowledgeable sources—big-name professors at Ivy League schools—pouring knowledge into as many small, receptive cups as possible. MOOCs are premised on that idea, offering hundreds of thousands of prospective students online access to the most elite faculty, and in some cases elite degrees, like Georgia Tech’s $7,000 master’s degree in computer science. Via MOOCs, prestigious professors can reach many more students than ever before, including students attending colleges at the lower rungs of the academic hierarchy. Those less prestigious schools can use MOOCs to turn their own classrooms into satellite units of Harvard and MIT.

While the best MOOCs have high production values and are designed using the latest research on how to transfer knowledge online, recent studies on how students learn science show that the key to effective teaching does not require the best professor from the best school, but rather an instructor who understands how to coach students in scientific thinking. Athletes, musicians, and dancers improve their skills with a coach who carefully observes their performance and provides feedback; similarly, the most effective science instructors follow their students’ performance on a problem-solving task and provide immediate, targeted feedback. Carl Wieman, along with two colleagues, recently demonstrated that students in a large-enrollment physics class learned more from an inexperienced instructor who used new teaching methods than they did from an experienced, well-regarded professor who gave traditional lectures.

What are these new teaching methods? They are a nearly complete inversion of the traditional approach to teaching: what used to be homework is now done in class, while lecture material is read outside class. These new methods are grounded in the idea that classroom time in science courses should be primarily spent practicing scientific thinking by “making and testing predictions and arguments about the relevant topics, solving problems, and critiquing their own reasoning and that of others.” Rather than spending class time on lectures that present factual knowledge, students spend nearly all their time on problem-solving tasks. You get your factual knowledge outside of class from textbooks, or, yes, even online videos. A crucial part of this new approach to teaching is immediate, targeted feedback from other students and from the instructor. The instructor gauges the students’ performance on a task using tools like classroom clickers, and then adjusts the classroom discussion accordingly. Wieman and his colleagues found that when they used these methods, student attendance increased by 20 percent and average test scores increased by 33 percent.

Scientists at other universities are finding the same thing, including instructors in Northwestern University’s Gateway Science Workshop and Washington University’s Genomics in Education program. (Full disclosure: I work at Washington University.) The innovative features of these programs will be very difficult to replicate in MOOCs. The large, moderated online forums featured in many MOOCs are no match for the focused, real-time feedback from engaged instructors and classmates. Truly effective science education at the college level can’t be mass produced, but the good news is that innovators in science education are creating tools and resources that can be shared by all colleges, including the low-cost community colleges that provide the lion’s share of college teaching in America.

One final reason to be wary of brand-name MOOCs is the risk that colleges will start to resemble big box retail stores—always the same, no matter where you go. The pre-packaged content of MOOCs requires a lot of up-front work, and that means that mid-course adjustments are not feasible. In February 2001, when the initial results of the Human Genome Project were published, I was enrolled in a class called “Eukaryotic Genomes.” Once the human genome papers came out, our professor quickly modified the lecture schedule, incorporating the new results into the class and pushing us to evaluate the new findings in light of what we had previously learned. It was a chance to engage with up-to-the-minute science, and all over the country similar classes were also taking stock of this research. You can bet that different conclusions were reached in each of hundreds of different classrooms around the country, which is a good thing, because learning how to think independently is more important than learning what the best professors at the best schools think.

Michael White
Michael White is a systems biologist at the Department of Genetics and the Center for Genome Sciences and Systems Biology at the Washington University School of Medicine in St. Louis, where he studies how DNA encodes information for gene regulation. He co-founded the online science pub The Finch and Pea. Follow him on Twitter @genologos.

More From Michael White

A weekly roundup of the best of Pacific Standard and PSmag.com, delivered straight to your inbox.

Recent Posts

October 30 • 2:00 PM

How Dark Money Got a Mining Company Everything It Wanted

An accidentally released court filing reveals how one company secretly gave money to a non-profit that helped get favorable mining legislation passed.


October 30 • 12:00 PM

The Halloween Industrial Complex

The scariest thing about Halloween might be just how seriously we take it. For this week’s holiday, Americans of all ages will spend more than $5 billion on disposable costumes and bite-size candy.


October 30 • 10:00 AM

Sky’s the Limit: The Case for Selling Air Rights

Lower taxes and debt, increased revenue for the city, and a much better use of space in already dense environments: Selling air rights and encouraging upward growth seem like no-brainers, but NIMBY resistance and philosophical barriers remain.


October 30 • 9:00 AM

Cycles of Fear and Bias in the Criminal Justice System

Exploring the psychological roots of racial disparity in U.S. prisons.


October 30 • 8:00 AM

How Do You Make a Living, Email Newsletter Writer?

Noah Davis talks to Wait But Why writer Tim Urban about the newsletter concept, the research process, and escaping “money-flushing toilet” status.



October 30 • 6:00 AM

Dreamers of the Carbon-Free Dream

Can California go full-renewable?


October 30 • 5:08 AM

We’re Not So Great at Rejecting Each Other

And it’s probably something we should work on.


October 30 • 4:00 AM

He’s Definitely a Liberal—Just Check Out His Brain Scan

New research finds political ideology can be easily determined by examining how one’s brain reacts to disgusting images.


October 29 • 4:00 PM

Should We Prosecute Climate Change Protesters Who Break the Law?

A conversation with Bristol County, Massachusetts, District Attorney Sam Sutter, who dropped steep charges against two climate change protesters.


October 29 • 2:23 PM

Innovation Geography: The Beginning of the End for Silicon Valley

Will a lack of affordable housing hinder the growth of creative start-ups?


October 29 • 2:00 PM

Trapped in the Tobacco Debt Trap

A refinance of Niagara County, New York’s tobacco bonds was good news—but for investors, not taxpayers.


October 29 • 12:00 PM

Purity and Self-Mutilation in Thailand

During the nine-day Phuket Vegetarian Festival, a group of chosen ones known as the mah song torture themselves in order to redirect bad luck and misfortune away from their communities and ensure a year of prosperity.


October 29 • 10:00 AM

Can Proposition 47 Solve California’s Problem With Mass Incarceration?

Reducing penalties for low-level felonies could be the next step in rolling back draconian sentencing laws and addressing the criminal justice system’s long legacy of racism.


October 29 • 9:00 AM

Chronic Fatigue Syndrome and the Brain

Neuroscientists find less—but potentially stronger—white matter in the brains of patients with CFS.


October 29 • 8:00 AM

America’s Bathrooms Are a Total Failure

No matter which American bathroom is crowned in this year’s America’s Best Restroom contest, it will still have a host of terrible flaws.



October 29 • 6:00 AM

Tell Us What You Really Think

In politics, are we always just looking out for No. 1?


October 29 • 4:00 AM

Racial Resentment Drives Tea Party Membership

New research finds a strong link between tea party membership and anti-black feelings.


October 28 • 4:00 PM

The New Health App on Apple’s iOS 8 Is Literally Dangerous

Design isn’t neutral. Design is a picture of inequality, of systems of power, and domination both subtle and not. Apple should know that.


October 28 • 2:00 PM

And You Thought Your Credit Card Debt Was Bad

In Niagara County, New York, leaders took on 40-year debt to pay for short-term stuff, a case study in the perverse incentives tobacco bonds create.



October 28 • 10:00 AM

How Valuable Is It to Cure a Disease?

It depends on the disease—for some, breast cancer and AIDS for example, non-curative therapy that can extend life a little or a lot is considered invaluable. For hepatitis C, it seems that society and the insurance industry have decided that curative therapy simply costs too much.


October 28 • 8:00 AM

Can We Read Our Way Out of Sadness?

How books can help save lives.



Follow us


We’re Not So Great at Rejecting Each Other

And it's probably something we should work on.

Chronic Fatigue Syndrome and the Brain

Neuroscientists find less—but potentially stronger—white matter in the brains of patients with CFS.

Incumbents, Pray for Rain

Come next Tuesday, rain could push voters toward safer, more predictable candidates.

Could Economics Benefit From Computer Science Thinking?

Computational complexity could offer new insight into old ideas in biology and, yes, even the dismal science.

Politicians Really Aren’t Better Decision Makers

Politicians took part in a classic choice experiment but failed to do better than the rest of us.

The Big One

One town, Champlain, New York, was the source of nearly half the scams targeting small businesses in the United States last year. November/December 2014

Copyright © 2014 by Pacific Standard and The Miller-McCune Center for Research, Media, and Public Policy. All Rights Reserved.